Part Number Hot Search : 
NTGS5120 NTGS5120 MH101 CPH5541 LPR355 MAX1926 CFD1275 P3155
Product Description
Full Text Search
 

To Download IRF3710Z Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 IRF3710Z IRF3710Zs IRF3710Zl hexfet ? power mosfet s d g v dss = 100v r ds(on) = 18m ? i d = 59a features o advanced process technology o ultra low on-resistance o dynamic dv/dt rating o 175c operating temperature o fast switching o repetitive avalanche allowed up to tjmax description specifically designed for automotive applications, this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional fea- tures of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features com- bine to make this design an extremely efficient and reliable device for use in automotive applica- tions and a wide variety of other applications. d 2 pak IRF3710Zs to-220ab IRF3710Z to-262 IRF3710Zl absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) a i d @ t c = 100c continuous drain current, v gs @ 10v (see fig. 9) i dm pulsed drain current  p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as single pulse avalanche energy (thermally limited)  mj e as (tested) sin g le pulse avalanche ener gy tested value  i ar avalanche current  a e ar repetitive avalanche ener gy  mj t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case ??? 0.92 c/w r cs case-to-sink, flat, greased surface 0.50 ??? r ja junction-to-ambient ??? 62 r ja junction-to-ambient (pcb mount, steady state)  ??? 40 max. 59 42 240 10 lbf?in (1.1n?m) 160 1.1 20 170 200 see fig.12a,12b,15,16 300 (1.6mm from case ) -55 to + 175 www.kersemi.com

2   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.27mh, r g = 25 ? , i as = 35a, v gs =10v. part not recommended for use above this value.  i sd 35a, di/dt 380a/s, v dd v (br)dss , t j 175c.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100% tested to this value in production.  this is applied to d 2 pak, when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended footprint and soldering techniques refer to application note #an-994. s d g s d g static @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units v (br)dss drain-to-source breakdown volta g e 100 ??? ??? v ? v dss / ? t j breakdown volta g e temp. coefficient ??? 0.10 ??? v/c r ds(on) static drain-to-source on-resistance ??? 14 18 m ? v gs(th) gate threshold volta g e 2.0 ??? 4.0 v g fs forward transconductance 35 ??? ??? s i dss drain-to-source leaka g e current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leaka g e ??? ??? 200 na gate-to-source reverse leaka g e ??? ??? -200 q g total gate char g e ??? 82 120 nc q gs gate-to-source char g e ??? 19 28 q gd gate-to-drain ("miller") char g e ??? 27 40 t d(on) turn-on dela y time ??? 17 ??? ns t r rise time ??? 77 ??? t d(off) turn-off dela y time ??? 41 ??? t f fall time ??? 56 ??? l d internal drain inductance ??? 4.5 ??? nh between lead, 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from packa g e and center of die contact c iss input capacitance ??? 2900 ??? pf c oss output capacitance ??? 290 ??? c rss reverse transfer capacitance ??? 150 ??? c oss output capacitance ??? 1130 ??? c oss output capacitance ??? 170 ??? c oss eff. effective output capacitance ??? 280 ??? diode characteristics parameter min. t y p. max. units i s continuous source current ??? ??? 59 (body diode) a i sm pulsed source current ??? ??? 240 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ???5075ns q rr reverse recover y char g e ??? 100 160 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 35a  v ds = v gs , i d = 250a v ds = 100v, v gs = 0v v ds = 100v, v gs = 0v, t j = 125c r g = 6.8 ? i d = 35a v ds = 50v, i d = 35a v dd = 50v i d = 35a v gs = 20v v gs = -20v t j = 25c, i f = 35a, v dd = 25v di/dt = 100a/s  t j = 25c, i s = 35a, v gs = 0v  showing the integral reverse p-n junction diode. mosfet symbol v gs = 0v v ds = 25v v gs = 0v, v ds = 80v, ? = 1.0mhz conditions v gs = 0v, v ds = 0v to 80v v ds = 80v v gs = 10v  ? = 1.0mhz, see fig. 5 v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 10v  www.kersemi.com

3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 175c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v 20s pulse width tj = 25c vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 2 4 6 8 10 v gs , gate-to-source voltage (v) 0 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 20s pulse width 0 10 20 30 40 50 60 70 i d , drain-to-source current (a) 0 20 40 60 80 100 120 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c vds = 15v 20s pulse width www.kersemi.com

4 fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 20406080100 q g total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v v ds = 50v v ds = 20v i d = 35a 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 v sd , source-to-drain voltage (v) 0.10 1.00 10.00 100.00 1000.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec www.kersemi.com

5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 i d , d r a i n c u r r e n t ( a ) 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 59a v gs = 10v www.kersemi.com

6 q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + -  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 15a 25a bottom 35a -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1.0 2.0 3.0 4.0 5.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a www.kersemi.com

7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ' t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-08 1.0e-07 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ' tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 10% duty cycle i d = 35a www.kersemi.com

8 fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"   
 v ds 90% 10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms www.kersemi.com

9 lead assignments 1 - gate 2 - drain 3 - source 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 outline conforms to jedec outline to-220ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. 

 
 

  dimensions are shown in millimeters (inches) part number international rectifier logo example : this is an irf1010 with assembly lot code 9b1m assembly lot code date code (yyww) yy = year ww = week 9246 irf1010 9b 1m a www.kersemi.com

10  


 
 f 530s t his is an irf 530s wit h lot code 8024 as s e mb le d on ww 02, 2000 in the ass embly line "l" as s e mb l y lot code int ernational rectifier logo part number dat e code year 0 = 2000 we e k 02 line l  


  dimensions are shown in millimeters (inches) www.kersemi.com

11 to-262 package outline dimensions are shown in millimeters (inches) to-262 part marking information e x a m p l e : t h i s i s a n i r l 3 1 0 3 l l o t c o d e 1 7 8 9 a s s e m b l y p a r t n u m b e r d a t e c o d e w e e k 1 9 l i n e c l o t c o d e y e a r 7 = 1 9 9 7 a s s e m b l e d o n w w 1 9 , 1 9 9 7 i n t h e a s s e m b l y l i n e " c " l o g o r e c t i f i e r i n t e r n a t i o n a l  igbt 1- gate 2- collector 3- emitter www.kersemi.com

 

 
 dimensions are shown in millimeters (inches) 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. www.kersemi.com


▲Up To Search▲   

 
Price & Availability of IRF3710Z

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X